You are currently browsing the monthly archive for March 2014.

Hello #MicroTwJc Fans!

Next Tuesday’s #microtwjc paper (which has just been published this month) is one for all bacteriologists (and virologists that like bacteria!) as it has implications for all bacteria due to the conservation of the bacteria cell cycle.

Title“FtsZ Placement in Nucleoid-Free Bacteria”

Authors: Manuel Pazos, Mercedes Casanova, Pilar Palacios, William Margolin, Paolo Natale, and Miguel Vicente

Abstract: We describe the placement of the cytoplasmic FtsZ protein, an essential component of the division septum, in nucleoid-free Escherichia coli maxicells. The absence of the nucleoid is accompanied in maxicells by degradation of the SlmA protein. This protein, together with the nucleoid, prevents the placement of the septum in the regions occupied by the chromosome by a mechanism called nucleoid occlusion (NO). A second septum placement mechanism, the MinCDE system (Min) involving a pole-to-pole oscillation of three proteins, nonetheless remains active in maxicells. Both Min and NO act on the polymerization of FtsZ, preventing its assembly into an FtsZ-ring except at midcell. Our results show that even in the total absence of NO, Min oscillations can direct placement of FtsZ in maxicells. Deletion of the FtsZ carboxyl terminal domain (FtsZ*), a central hub that receives signals from a variety of proteins including MinC, FtsA and ZipA, produces a Min-insensitive form of FtsZ unable to interact with the membrane-anchoring FtsA and ZipA proteins. This protein produces a totally disorganized pattern of FtsZ localization inside the maxicell cytoplasm. In contrast, FtsZ*-VM, an artificially cytoplasmic membrane-anchored variant of FtsZ*, forms helical or repetitive ring structures distributed along the entire length of maxicells even in the absence of NO. These results show that membrane anchoring is needed to organize FtsZ into rings and underscore the role of the C-terminal hub of FtsZ for their correct placement.

Discussion Points

  • Was the paper clearly written, presented etc. Did it all make sense?
  • Were the methods sound? Was there anything extra that you would have done? How were the stats?
  • Were the conclusions supported by the results?
  • How much of this is new? What are the practical implications?
  • What experiments would you do next?
  • Hope to see you on Tuesday 1st April, 8pm BST 🙂  (thats right! our clocks will have changed and we’ll be on summer time!)
Advertisements

Hi all.

Tuesday’s #microtwjc paper is this one:

Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention

Gareth McVicker, Tomasz K. Prajsnar, Alexander Williams, Nelly L. Wagner, Michael Boots, Stephen A. Renshaw, Simon J. Foster

Abstract:

To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population “bottleneck” whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus(MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where inappropriate usage leading to resistance may reduce the efficacy of life-saving drugs.

Author Summary:

Staphylococcus aureus is a major cause of human disease, made even more notable due to the spread of antibiotic resistance. We used a combination of animal models to study the spread of bacteria between organs during an infection and the resulting effect of antibiotic intervention. We found that S. aureus infection is highly clonal, following a “bottleneck” in which very few bacterial cells found each abscess. Despite previous in vitro research, the effect of antibiotics on S. aureus infection was poorly understood. We utilized our systemic infection models to study intervention with sub-curative antibiotic doses, such as one might encounter upon failing to complete an antibiotic course. We have shown that such doses are able to support the preferential expansion of antibiotic-resistant organisms during a mixed infection. This selection is due to the clonal pattern of infection, occurring despite a lack of effect on growth rate or on the spontaneous generation of resistance. Furthermore, it is generic to multiple pathogen species, including Pseudomonas aeruginosa, and antibiotic classes, such as with methicillin-resistant S. aureus (MRSA) in the presence of oxacillin. Given the current debate in the field, our results have important implications for the design of properly-controlled treatment regimes.

Discussion Points

  1. Was the paper clearly written, presented etc. Did it all make sense?
  2. Were the methods sound? Was there anything extra that you would have done? How were the stats?
  3. Were the conclusions supported by the results?
  4. How much of this is new? What are the practical implications?
  5. What experiments would you do next?

Hope to see you on Tuesday 18th March, 8pm GMT 🙂