Hi All

For the next #microtwjc session on Tuesday 3rd Feb 8pm GMT we will be discussing the following paper

Granulocytes Impose a Tight Bottleneck upon the Gut Luminal Pathogen Population during Salmonella Typhimurium Colitis

Published in December in PLoS Pathogens

The paper is available from the link below:


Sorry Im posting it so close to the session I forgot it was my turn!


Topological, chemical and immunological barriers are thought to limit infection by enteropathogenic bacteria. However, in many cases these barriers and their consequences for the infection process remain incompletely understood. Here, we employed a mouse model forSalmonella colitis and a mixed inoculum approach to identify barriers limiting the gut luminal pathogen population. Mice were infected via the oral route with wild type S. Typhimurium (S.Tm) and/or mixtures of phenotypically identical but differentially tagged S. Tm strains (“WITS”, wild-type isogenic tagged strains), which can be individually tracked by quantitative real-time PCR. WITS dilution experiments identified a substantial loss in tag/genetic diversity within the gut luminal S. Tm population by days 2–4 post infection. The diversity-loss was not attributable to overgrowth by S. Tm mutants, but required inflammation, Gr-1+ cells (mainly neutrophilic granulocytes) and most likely NADPH-oxidase-mediated defense, but not iNOS. Mathematical modelling indicated that inflammation inflicts a bottleneck transiently restricting the gut luminalS. Tm population to approximately 6000 cells and plating experiments verified a transient, inflammation- and Gr-1+ cell-dependent dip in the gut luminal S. Tm population at day 2 post infection. We conclude that granulocytes, an important clinical hallmark of S. Tm-induced inflammation, impose a drastic bottleneck upon the pathogen population. This extends the current view of inflammation-fuelled gut-luminal Salmonella growth by establishing the host response in the intestinal lumen as a double-edged sword, fostering and diminishing colonization in a dynamic equilibrium. Our work identifies a potent immune defense against gut infection and reveals a potential Achilles’ heel of the infection process which might be targeted for therapy.

Author Summary:

Salmonella Typhimurium can colonize the human intestine and cause severe diarrhea. In recent years, it has become clear that this pathogen profits from inflammatory changes in the intestinal lumen, as the inflamed gut helps Salmonella to out-compete the resident microbiota. Granulocytes transmigrating into the gut lumen were found to “foster” luminal Salmonellagrowth by providing nutrients (used by Salmonella, not the microbiota) and by releasing growth inhibitors affecting the microbiota, but not the pathogen. In this study, we extend this “fostering” concept by showing that gut luminal Salmonella Typhimurium population is itself surprisingly vulnerable to the host’s inflammatory response. Indeed, inflammation reduces the size of the gut luminal Salmonella population by as much as 105-fold at day 2 post infection. Thus, triggering of mucosal inflammation is in fact a double-edged sword by providing S. Typhimurium with a relative growth advantage against the microbiota in the gut lumen and by killing 99.999% of the gut luminal pathogen population at day 2. However, the pathogen population can recover and grow up again during the subsequent days. This changes the current view: Inflammation is not simply “beneficial” for the pathogen in the gut lumen. Instead, pathogen growth in the inflamed gut must be considered as an equilibrium between inflammation-inflicted killing and fostering growth of the surviving bacteria.

Discussion points:

1. Is the paper well written and concise?

2. Are the experiments well designed?

3. Do the results further our knowledge?

4. Anything you would have done differently?

If there is anything else you would like to discuss please use the comments box below.

See you all on Tues