Morning All,

Apologies for the late posting of this paper. For the upcoming #MicroTwJc (8pm GMT, Tuesday 4th February 2014) we will be following (quite literally) Pseudomonas aeruginosa cells as they try and move around in their environment.  This newly relaxed paper was chosen because 1) it uses holographic tracking which is and sounds very cool, and 2) I couldn’t find any newly released rugby-microbiology hybrid papers (to commemorate the start of the six nations! – which is a shame, however there is a nice elite rugby cryotherapy paper out there).

Citation: Vater SM, Weiße S, Maleschlijski S, Lotz C, Koschitzki F, et al. (2014) Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking. PLoS ONE 9(1): e87765. doi:10.1371/journal.pone.0087765

Authors: Svenja M. Vater, Sebastian Weiße, Stojan Maleschlijski1, Carmen Lotz, Florian Koschitzki, Thomas Schwartz, Ursula Obst, Axel Rosenhahn

Title: Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking

Abstract: Holographic 3D tracking was applied to record and analyze the swimming behavior ofPseudomonas aeruginosa. The obtained trajectories allow to qualitatively and quantitatively analyze the free swimming behavior of the bacterium. This can be classified into five distinct swimming patterns. In addition to the previously reported smooth and oscillatory swimming motions, three additional patterns are distinguished. We show that Pseudomonas aeruginosaperforms helical movements which were so far only described for larger microorganisms. Occurrence of the swimming patterns was determined and transitions between the patterns were analyzed.

Discussion Points:

  • Was the paper clearly written?
  • Were the methods chosen appropriate?
  • Do the experiments show sufficient proof for the claim that transcriptional regulation is not sufficient to explain flux changes?
  • What experiments could be done next?



See you all on Tuesday! Go Wales!